Tänään käsiteltiin kappaleen 4 loppuosa, ja pohdittiin siirtofunktion merkitystä suotimen analyysissä. Tämän ja viime viikon tavoite oli siis oppia analysoimaan annetun suotimen toiminta. Ensi viikolla käännetään ongelma toisin päin ja siirrytään suotimen synteesiin: kuinka suunnitellaan suotimen impulssivaste niin että se täyttää annetut taajuusvaatimukset.
Kaikki lähtee liikkeelle konvoluution ja z-muunnoksen yhteydestä: konvoluutio muuttuu kertolaskuksi z-muunnoksessa. Jos siis suodatus noudattaa yhtälöä
y(n) = h(n) * x(n),
on sama yhtälö voimassa myös z-tasossa:
Y(z) = H(z) X(z)
Tällöin impulssivasteen h(n) muunnoksen tuloksesta käytetään nimeä siirtofunktio. Siirtofunktio on rationaalifunktio, jonka osoittajassa ja nimittäjässä on polynomi. Kun tämä lauseke tiedetään, saadaan Fourier-muunnos em. sijoituksella. Tulos H(exp(iw)) on nimeltään taajuusvaste, ja siihen menee sisään reaaliluku w (taajuus josta ollaan kiinnostuneita), ja ulos tulee kompleksiluku. Tämän kompleksiluvun itseisarvo kertoo kuinka suuri vahvistus suotimella on kyseisellä taajuudella.
Suotimen analyysi käytiin läpi kaavan (4.3) suotimella. Ensin siitä selvitetään impulssivaste, sitten siirtofunktio ja lopuksi taajuusvaste. Taajuusvaste on kompleksifunktio, joten sitä ei voida sellaisenaan piirtää 2-ulotteiseen koordinaatistoon. Näin ollen piirretään kaksi kuvaajaa: funktion itseisarvon kuvaaja sekä sen vaihekulman kuvaaja. Näistä edellinen kertoo kuinka paljon eri taajuuksien amplitudit muuttuvat suodatuksessa ja jälkimmäinen paljonko ne viivästyvät suodatuksessa. Amplitudivaste on näistä mielenkiintoisempi, koska sen avulla taajuuksia saadaan esim. poistettua yksinkertaisesti huolehtimalla että amplitudivaste ko. taajuudella on nolla. Vaihevasteessakin on oma mielenkiintonsa, ja siihen tutustutaan lähemmin ensi viikolla.
Lineaarista asteikkoa kätevämpi on käyttää desibeliasteikkoa, joka on logaritminen. Logaritmi tekee kertolaskusta yhteenlaskua, ja korostaa lähellä nollaa olevia eroja, jotka molemmat ovat meille käteviä ominaisuuksia.
Seuraavaksi perehdyttiin suotimen siirtofunktion käytännön laskentaan kappaleessa 4.5.4. Tällä menetelmällä saadaan kätevästi sekä IIR-, että FIR-suotimen siirtofunktiot laskettua. Siirtofunktion navoista ja nollista voi päätellä yllättävän paljon suotimen stabiilisuudesta sekä amplitudivasteesta, ja tästä jatketaan ensi kerralla.
keskiviikko 3. maaliskuuta 2010
Tilaa:
Lähetä kommentteja (Atom)

Ei kommentteja:
Lähetä kommentti